Abstract

The mechanism of adherence of Streptococcus mutans to smooth glass surfaces has been studied. The results with both viable and heat-killed cells showed that the process required (i) the synthesis of a water-insoluble dextran-levan polymer by cell-bound enzymes and (ii) the participation of a binding site on the surface of the S. mutans cell. Synthesis of the polymer from sucrose in the presence of the cells was required for adherence, and indicates that an "active" form of the polymer was required. Polymer synthesized by cell-free S. mutans enzymes when added to S. mutans cells did not produce adherence. Purified antibody globulin, specific for the a-d site in the polysaccharide S. mutans group a antigen, completely inhibited adherence. Antibody to the second antigen present in the polysaccharide molecule, the a antigen, did not inhibit adherence. The evidence indicates that adherence did not require an antigenic binding site which might be common to all S. mutans strains. The orientation of the synthetase enzyme(s), antigenic binding site, and dextran-levan polymer on the cell surface is under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.