Abstract

Deoxyribonuclease II has been purified through five fractionation steps from the human lymphoblast cell line K562. Isolation included DEAE-cellulose and heparin-agarose chromatography followed by fractionation on Mono-S, Mono-Q and Superose-12 FPLC columns. In an extension of previous studies, deoxyribonuclease II was found to introduce a much higher proportion of single-strand nicks relative to double-strand breaks into supercoiled DNA than has been reported for linear DNA. Application of DNA sequencing techniques has further revealed a unique resistance of 3' termini to hydrolysis by this enzyme. Deoxyribonuclease II cleaves at every available site along the duplexed portion of a paired oligonucleotide substrate with the exception of the last four nucleotides. Consistent with previous results, this deoxyribonuclease II is active at low pH in the absence of Mg2+ and is not inhibited by EDTA, but complete inhibition is observed with 100 microM Fe3+. Likewise we confirmed the presence of 3'-phosphoryl termini on the DNA cleavage products since they failed to function as primers for DNA synthesis catalyzed by Escherichia coli DNA polymerase I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.