Abstract
The mechanism of action of barium ion on the aortic smooth muscle of the normal rat was investigated using in vitro calcium-depleted aortic strips. Aortic strips were depleted of calcium by repeated exposure to norepinephrine in a calcium-free bathing solution. Although calcium depletion abrogated the response of strips to catecholamines and depolarizing agents, the response to barium chloride remained quantitatively intact. The calcium influx blocker D 600 prevented the contractile response to barium but not to catecholamines, whereas phentolamine prevented the response to catecholamines but not barium. The strip response to barium was depressed by a twofold increase in extracellular magnesium concentration whether the strip was intact or calcium depleted. Although increased concentrations of calcium in the extracellular medium inhibited the contractile response to potassium ion, increases in barium merely potentiated the potassium contracture. These findings indicate that barium produces its contractile effect on vascular smooth muscle by a direct intracellular interaction with the contractile or regulatory proteins. Barium enters these cells via calcium influx channels and is probably not sequestered in a physiologically releasable pool. Unlike calcium, barium does not stabilize the smooth muscle sarcolemma when present in high concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.