Abstract

The last resort for treating multidrug-resistant (MDR) Pseudomonas aeruginosa and other MDR Gram-negative bacteria is a class of antibiotics called the polymyxins; however, polymyxin-resistant isolates have emerged. In response, antimicrobial peptides (AMPs) and their synthetic mimetics have been investigated as alternative therapeutic options. Oligothioetheramides (oligoTEAs) are a class of synthetic, sequence-defined oligomers composed of N-allylacrylamide monomers and an abiotic dithiol backbone that is resistant to serum degradation. Characteristic of other AMP mimetics, the precise balance between charge and hydrophobicity has afforded cationic oligoTEAs potent antimicrobial activity, particularly for the compound BDT-4G, which consists of a 1,4-butanedithiol backbone and guanidine pendant groups, the latter of which provides a cationic charge at physiological pH. However, the activity and mechanism of cationic oligoTEAs against MDR Gram-negative isolates have yet to be fully investigated. Herein, we demonstrated the potent antimicrobial activity of BDT-4G against clinical isolates of P. aeruginosa with a range of susceptibility profiles, assessed the kinetics of bactericidal activity, and further elucidated its mechanism of action. Activity was also evaluated against a panel of polymyxin-resistant isolates, including intrinsically-resistant species. We demonstrate that BDT-4G can evade some of the mechanisms conferring resistance to polymyxin B and thus may have therapeutic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.