Abstract

Monomeric actin (G-actin) polymerizes spontaneously into helical filaments in the presence of inorganic salts. The slowest, rate-limiting step of the polymerization process is formation of actin trimers, the smallest oligomers that serve as nuclei for fast filament growth (filament elongation) by monomer addition at the filament ends. In low ionic-strength solutions, actin can be polymerized by myosin subfragment-1 (S1). In early works it has been suggested that G-actin-S1 1:1 complexes (GS) assemble into filaments according to the nucleation-filament elongation scheme. Subsequent studies indicated that one S1 molecule can bind two actin monomers, and that oligomerization of the initial complexes is a fast reaction. This has led to suggest an alternative mechanism, with a ternary G 2S complex and its oligomers being predominant intermediates of S1-induced assembly of G-actin into filaments. We used dynamic light scattering to analyze the initial steps of S1-induced polymerization of actin. Our results suggest formation of GS complexes and their oligomers in the presence of S1 equimolar to or in excess over actin. We confirm formation of G 2S complexes as intermediates of S1-induced polymerization in the presence of actin in excess over S1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.