Abstract

Background: Mechanism for glucose toxicity is known to be an increased oxidative stress produced by multiple pathways. In our previous report, 2-deoxy-d-ribose (dRib) promoted apoptosis by increasing oxidative stress in a pancreatic β-cell line. We performed this study to investigate the mechanism of dRib-induced damage of β-cells. Methods: HIT-T15 cells were cultured in RPMI-1640 medium with 40 mM dRib for 24 hours after pretreatment with various concentrations of a metal chelator (DTPA) and inhibitors of protein glycation (aminoguanidine and pyridoxamine). Cell viability was determined by MTT assay. Apoptosis was analyzed by flow cytometry with annexin V/PI double staining.Results: DTPA, which inhibits the monosaccharide autoxidation, partially reversed dRib-induced cytotoxicity in a dose-dependent manner (P

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.