Abstract

In this study, we investigated the mechanism that links activation of N-methyl-D-aspartate (NMDA) receptors to inhibition of voltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low-calcium saline or dialyzed with the calcium chelator BAPTA to determine that calcium influx through NMDA channels is required for sodium channel modulation. To determine whether calcium influx through NMDA channels triggers calcium-induced calcium release (CICR), cells were loaded with the calcium-sensitive dye calcium green 2 and changes in relative fluorescence were measured in response to NMDA. Responses were compared with measurements obtained when caffeine depleted stores. Voltage-clamp studies demonstrated that CICR modulated sodium channels in a manner similar to that of NMDA. Blocking NMDA receptors with AP-7, blocking CICR with ruthenium red, depleting stores with caffeine, or dialyzing cells with calmodulin antagonists W-5 or peptide 290-309 all prevented sodium channel modulation. These results support the hypothesis that NMDA modulation of voltage-gated sodium channels in horizontal cells requires CICR and activation of a calmodulin-dependent signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.