Abstract

Abstract Uniform magnetite nanoparticles (MNP) were prepared through a facile hydrothermal routine and subjected to the heterogeneous activation of persulfate (PS) to degrade norfloxacin (NOR). The degradation efficiency reached 90% within 60 min (the concentration of NOR and PS was 15 μM and 1 mM, respectively; dose of MNP: 0.3 g L−1; pH: 4.0). However, it was greatly inhibited with the increase of pH, especially at basic condition (pH0 = 9.0). This was probably due to the precipitation of the ferrous ions leached from the surface of MNP. In addition, hydroxyl radical was found to dominate the degradation process at acidic condition while both sulfate and hydroxyl radicals contributed to the degradation at neutral condition. Except the leached form, the structural ferrous ion on the surface of MNP also participated in the activation process through the redox reactions, as illustrated by the X-ray photoelectron spectroscopy (XPS) analysis. Finally, four degradation pathways were tentatively proposed based on the identified intermediates and the transformation of piperazinyl ring seemed to be the primary one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.