Abstract
The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.