Abstract
The interferon-beta promoter has been studied extensively as a model system for combinatorial transcriptional regulation. In virus-infected cells the transcription factors ATF-2, c-Jun, interferon regulatory factor (IRF)-3, IRF-7 and NF-kappaB, and the coactivators p300/CBP play critical roles in the activation of this and other promoters. It remains unclear, however, why most other combinations of AP-1, IRF and Rel proteins fail to activate the interferon-beta gene. Here we have explored how different IRFs may cooperate with other factors to activate transcription. First we showed in undifferentiated embryonic carcinoma cells that ectopic expression of either IRF-3 or IRF-7, but not IRF-1, was sufficient to allow virus-dependent activation of the interferon-beta promoter. Moreover, the activity of IRF-3 and IRF-7 was strongly affected by promoter context, with IRF-7 preferentially being recruited to the natural interferon-beta promoter. We fully reconstituted activation of this promoter in insect cells. Maximal synergy required IRF-3 and IRF-7 but not IRF-1, and was strongly dependent on the presence of p300/CBP, even when these coactivators only modestly affected the activity of each factor by itself. These results suggest that specificity in activation of the interferon-beta gene depends on a unique promoter context and on the role played by coactivators as architectural factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.