Abstract
This study proposes three models to explain the mechanism of the three major types of mafic dyke swarms. Parallel dyke swarms form in response to a regional stress field, e.g. the mafic dyke swarms in the North China Craton, whereas small radiating dyke swarm forms due to stress constructions around a plutonic or volcanic edifice, such as the dyke swarm at Spanish Peak, USA. The third type of radiating dyke swarm is giant fan-shaped dyke swarm such as the Mackenzie dyke swarm. Fractures that formed prior to magmatism may play a vital role in dictating the dyke swarm geometry. In most of the cases, the pre-existing fractures are induced by tectonic stresses and not by magma injection though magma injection can increase the fracture size by propagation at the dyke tip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.