Abstract

Rod photoreceptor cGMP phosphodiesterase (PDE6) consists of a catalytic subunit complex (Palphabeta) and two inhibitory subunits (Pgamma). In the accompanying article, using bovine photoreceptor outer segment homogenates, we show that Pgamma as a complex with the GTP-bound transducin alpha subunit (GTP-Talpha) dissociates from Palphabetagammagamma on membranes, and the Palphabetagammagamma becomes Pgamma-depleted. Here, we identify and characterize the Pgamma-depleted PDE. After incubation with or without guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), Palphabeta complexes are extracted. When a hypotonic buffer is used, Palphabetagammagamma, Palphabetagamma, and a negligible amount of a Palphabeta complex containing Pgamma are isolated with GTPgammaS, and only Palphabetagammagamma is obtained without GTPgammaS. When an isotonic buffer containing Pdelta, a prenyl-binding protein, is used, Palphabetagammagammadelta, Palphabetagammadeltadelta, and a negligible amount of a Palphabeta complex containing Pgamma and Pdelta are isolated with GTPgammaS, and Palphabetagammagammadelta is obtained without GTPgammaS. Neither Palphabeta nor Palphabetagammagamma complexed with GTPgammaS-Talpha is found under any condition we examined. Palphabetagamma has approximately 12 times higher PDE activity and approximately 30 times higher Pgamma sensitivity than those of Palphabetagammagamma. These results indicate that the Pgamma-depleted PDE is Palphabetagamma. Isolation of Palphabetagammagammadelta and Palphabetagammadeltadelta suggests that one C-terminus of Palphabeta is involved in the Palphabetagammagamma interaction with membranes, and that Pgamma dissociation opens another C-terminus for Pdelta binding, which may lead to the expression of high PDE activity. Cone PDE behaves similarly to rod PDE in the anion exchange column chromatography. We conclude that the mechanisms for PDE activation are similar in mammalian and amphibian photoreceptors as well as in rods and cones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.