Abstract

Electrolyte gating using ionic liquid electrolytes has recently generated considerable interest as a method to achieve large carrier density modulations in a variety of materials. In noble metal thin films, electrolyte gating results in large changes in sheet resistance. The widely accepted mechanism for these changes is the formation of an electric double layer with a charged layer of ions in the liquid and accumulation or depletion of carriers in the thin film. We report here a different mechanism. In particular, we show using x-ray absorption near edge structure (XANES) that the previously reported large conductance modulation in gold films is due to reversible oxidation and reduction of the surface rather than the charging of an electric double layer. We show that the double layer capacitance accounts for less than 10\% of the observed change in transport properties. These results represent a significant step towards understanding the mechanisms involved in electrolyte gating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.