Abstract

An analysis of the forces and motion at 500 mb, between 30 and 60°N, in wavenumber-frequency domain, indicates that there exist definite cycles in the generation, transport and dissipation of the kinetic and available potential energies associated with long- and synoptic-scale waves. The growth and decay of the kinetic energy of long- and synoptic-scale waves are primarily controlled by the transport of kinetic energy to and from the waves through the nonlinear wave interactions, while the contribution to the kinetic energy through energy conversion tends to balance the effects of the Reynolds and frictional stresses. The evolution of the available potential energy associated with the long and synoptic waves is essentially the consequence of the transfer of thermal energy to and from the wave through the interaction between the velocity and temperature waves, while the transfer of thermal energy through the interactions between the velocity waves and the gradient of the zonal mean temperature tends to balance the effects of diabatic heating or cooling and energy conversion. The growth and decay of the kinetic energy of the zonal flow are primarily the result of the interaction between the velocity waves and the gradient of the mean zonal velocity, while the energy conversion from available potential to kinetic energy tends to balance the effects of the Reynolds and frictional stresses. The evolution of available potential energy associated with the zonal flow is essentially controlled by the interaction between the velocity waves and the gradient of the zonal mean temperature, while the effect of diabatic heating tends to balance the effect of energy conversion between the kinetic and available potential energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.