Abstract

A detailed reaction mechanism is proposed for the formation of crystalline elemental sulfur from aqueous sulfide by oxidation with transition-metal ions like VV, FeIII, CuII, etc. The first step is the formation of HS• radicals by one-electron oxidation of HS- ions. These radicals exist at pH values near 7 mainly as S•-. Their spontaneous decay results in the formation of the disulfide ion S22-. The further oxidation of disulfide either by S•- radicals or by the transition-metal ions yields higher polysulfide ions from which the homocyclic sulfur molecules S6, S7, and S8 are formed. In water these hydrophobic molecules form clusters which grow to droplets of liquid sulfur (sulfur sol). Depending on the composition of the aqueous phase, crystallization of the liquid sulfur as either α- or β-S8 is rapid or delayed. Surfactants delay this solidification, while certain cations promote it. All these reactions are proposed to take place in desulfurization plants working by the Stretford, Sulfolin, Lo-Cat, SulFe...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.