Abstract

Rare earth ion (RE3+)-doped inorganic CsPbX3 (X = Cl or Cl/Br) nanocrystals have been presented as promising materials for applications in solar-energy-conversion technology. An extremely efficient sensitization of Yb3+ luminescence in CsPbCl3 nanoparticles (NCs) was very recently demonstrated where quantum cutting is responsible for the performance of photoluminescence quantum yields over 100% ( T. J. Milstein, et al. Nano Letters 2018 , 18 , 3792 ). In the present work, based on the cubic phase of inorganic perovskite, we seek to obtain atom-level insight into the basic mechanisms behind these observations in order to boost the further development of RE3+-doped CsPbX3 NCs for optoelectronics. In our calculations of cubic crystal structure, we do not find any energy level formed in the middle of the band gap, which disfavors a mechanism of stepwise energy transfer from the perovskite host to two Yb3+ ions. Our work indicates that the configuration with "right-angle" Yb3+-VPb-Yb3+ couple is most likely to form in Yb3+-doped CsPbCl3. Associated with this "right-angle" couple, the "right-angle" Pb atom with trapped excited states would localize the photogenerated electrons and act as the energy donor in a quantum cutting process, which achieves simultaneous sensitization of two neighboring Yb3+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.