Abstract
This paper develops a framework for the interpretation of ionic insertion/deinsertion reactions in an aqueous environment taking place in transition-metal hexacyanoferrates of the general formula K(h)[Fe(2+) (CN)(6)](l).mH(2)O, also called Prussian Blue. Three different processes were fully separated in the electrochemistry of these films. It was clearly identified that one of these electrochemical processes involves the insertion/deinsertion of H(3)O(+) (hydrated protons) through the channels of the K(h)[Fe(2+) (CN)(6)](l).mH(2)O structure to reach the film electroneutrality during the electron transfer between Everitt's Salt and Prussian Blue. The other electrochemical processes involve K(+) or H(+) (proton) exchange through the water crystalline structure existing in the channels of the K(h)[Fe(2+)(CN)(6)](l).mH(2)O structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.