Abstract

The structure of Fe–Cu composites after solid-phase and liquid-phase sintering was studied. It is shown that 2–10 wt.% molybdenum additions have an activating effect on the diffusion processes in densification, grain growth, and recrystallization, as well as on the amount and composition of copper and iron solid solutions. Molybdenum additions to 70 wt.% Fe–30 wt.% Cu composites simultaneously influence their strength and ductility properties. With increasing molybdenum content, the solubility of iron in copper decreases, promoting higher ductility of the composites, and the solid solutions of copper and molybdenum in iron preserve their strength characteristics. Solidphase sintering results in fine-grained FeCuMo samples with high relative density (up to 98.8%) and high ductility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call