Abstract
The structure of Fe–Cu composites after solid-phase and liquid-phase sintering was studied. It is shown that 2–10 wt.% molybdenum additions have an activating effect on the diffusion processes in densification, grain growth, and recrystallization, as well as on the amount and composition of copper and iron solid solutions. Molybdenum additions to 70 wt.% Fe–30 wt.% Cu composites simultaneously influence their strength and ductility properties. With increasing molybdenum content, the solubility of iron in copper decreases, promoting higher ductility of the composites, and the solid solutions of copper and molybdenum in iron preserve their strength characteristics. Solidphase sintering results in fine-grained FeCuMo samples with high relative density (up to 98.8%) and high ductility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.