Abstract

Glucose oxidase (GO) was encapsulated in the liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) to increase the enzyme stability through its decreased inhibition because of hydrogen peroxide (H(2)O(2)) produced in the glucose oxidation. The GO-containing liposomes (GOLs) were completely free of the inhibition even in the complete conversion of 10 mM glucose at 25 degrees C because the H(2)O(2) concentration was kept negligibly low both outside and inside liposomes throughout the reaction. It was interestingly revealed that the H(2)O(2) produced was decomposed not only by a slight amount of catalase originally contained in the commercially available GO but also by the lipid membranes of GOL. As compared to the GOL-catalyzed reaction, the free GO-catalyzed reaction more highly accumulated H(2)O(2) because of the more rapid glucose conversion despite containing free catalase, leading to the completely inhibited GO before reaching a sufficient glucose conversion. This suggested that only the liposomal catalase could continue to catalyze the H(2)O(2) decomposition. The effect of the glucose oxidation rate, i.e., the H(2)O(2) production rate on the liposomal GO inhibition, was also examined employing the various GOLs with different permeabilities to glucose present in their external phase. It was concluded that the liposomal GO free of the inhibition could be obtained when the GOL-catalyzed H(2)O(2) formation rate was limited by such a suitable lipid bilayer as POPC membrane so that the rate was well-balanced with the sum of the above two H(2)O(2) decomposition rates. The highly stable GOL obtained in the present paper was shown to be a useful biocatalyst for the prolonged glucose oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.