Abstract

The Kubo formula expresses a linear response of the quantum system to weak classical fields. Previous studies showed that the environment degrades the quantum Hall conductance. By studying the dynamics of dissipative two-band systems, in this paper we find that the formation of system-environment bound states is responsible for the Hall conductance immune to the effect of the environment. The bound states can form only when the system-environment couplings are below a threshold. Our results may be of both theoretical and experimental interest in exploring dissipative topological insulators in realistic situations, and may open new perspectives for designing active quantum Hall devices working in realistic environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.