Abstract
A concept is proposed of a plasma pixel based on an open-discharge microstructure. The concept employs the capability of an open discharge to generate an electron beam at moderate (1–3 kV) discharge voltages with an efficiency close to 100%. To determine the possible application of this type of discharge, the parameters of the electron beams generated in open discharges operating in different working gases at various geometries of the discharge cell and various dimensions of the discharge channel were investigated. The electric potential distributions in the dielectric plate channel and in the cathode cavity were measured. The effect of additional illumination by radiation generated in the drift space on the current-voltage characteristic of the discharge is studied. Based on the results obtained, a noncontradictory model of a discharge capable of very efficiently generating an electron beam is proposed. According to this model, the main contribution to the electron beam comes from the photoelectron emission from the cathode under the action of radiation from the working-gas atoms excited by fast heavy particles in a highly nonuniform electric field in the cathode cavity. Such a field also scatters ions and fast atoms, thus reducing their fluxes toward the cathode. The results obtained indicate that highly efficient light sources and plasma panels can be created on the basis of open-discharge microstructures with a cathode cavity. Such microstructures allow very efficient conversion of electric energy into light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.