Abstract

It has been documented widely that when the generation times of eucaryotic cells are lengthened by slowing the rate of protein synthesis, the duration of the chromosome cycle (S, G2, and M phases) remains relatively invariant. Paradoxically, when the growth of exponentially growing cultures of CHO cells is partially inhibited with inhibitors of protein synthesis, the immediate effect is a proportionate reduction in the rate of total protein, histone protein, and DNA synthesis. However, on further investigation it was found that over the next 2 h the rates of histone protein and DNA synthesis recover, in some cases completely to the uninhibited rate, while the synthesis rates of other proteins do not recover. We called this process chromosome cycle compensation. The amount of compensation seen in CHO cell cultures can account quantitatively for the relative invariance in the length of the chromosome cycle (S, G2, and M phases) reported for these cells. The mechanism for this compensation involves a specific increase in the levels of histone mRNAs. An invariant chromosome cycle coupled with a lengthening growth cycle must result in a disproportionate lengthening of the G1 phase. Thus, these results suggest that chromosome cycle invariance may be due more to specific cellular compensation mechanisms rather than to the more usual interpretation involving a rate-limiting step for cell cycle progression in the G1 phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.