Abstract

A biophysical model for the action of oscillating electric fields on cells, presented by us before [Biochem. Biophys. Res. Commun. 272(3) (2000) 634–640], is extended now to include oscillating magnetic fields as well, extended to include the most active biological conditions, and also to explain why pulsed electromagnetic fields can be more active biologically than continuous ones. According to the present theory, the low frequency fields are the most bioactive ones. The basic mechanism is the forced-vibration of all the free ions on the surface of a cell’s plasma membrane, caused by an external oscillating field. We have shown that this coherent vibration of electric charge is able to irregularly gate electrosensitive channels on the plasma membrane and thus cause disruption of the cell’s electrochemical balance and function [Biochem. Biophys. Res. Commun. 272(3) (2000) 634–640]. It seems that this simple idea can be easily extended now and looks very likely to be able to give a realistic basis for the explanation of a wide range of electromagnetic field bioeffects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.