Abstract

Recent work studied Stackelberg security games with multiple defenders, in which heterogeneous defenders allocate security resources to protect a set of targets against a strategic attacker. Equilibrium analysis was conducted to characterize outcomes of these games when defenders act independently. Our starting point is the observation that the use of resources in equilibria may be inefficient due to lack of coordination. We explore the possibility of reducing this inefficiency by coordinating the defenders---specifically, by pooling the defenders' resources and allocating them jointly. The defenders' heterogeneous preferences then give rise to a collective decision-making problem, which calls for a mechanism to generate joint allocation strategies. We seek a mechanism that encourages coordination, produces efficiency gains, and incentivizes the defenders to report their true preferences and to execute the recommended strategies. Our results show that, unfortunately, even these basic properties clash with each other and no mechanism can achieve them simultaneously, which reveals the intrinsic difficulty of achieving meaningful defense coordination in security games. On the positive side, we put forward mechanisms that fulfill some of these properties and we identify special cases of our setting where more of these properties are compatible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call