Abstract

When a water-saturated clayey soil is leached with an organic fluid such as heptane, it has been found that under some conditions the hydraulic conductivity (or the permeability) increases manyfold. While it is generally agreed that physicochemical changes (e.g., compression of double-layer thickness) and the consequent alterations to the internal fabric (e.g., shrinkage of clusters) are responsible in most cases for such an increase, the underlying mechanism is not clearly understood. Two possible mechanisms are (1) formation of a few macrocracks due to shrinkage of clusters and (2) uniform increase in intercluster porosity throughout the volume of the soil due to shrinkage of clusters. The objective of the study presented here is to examine the most plausible mechanism of permeability increase caused by leaching. With the aid of Olsen’s permeability equation based on the cluster model, Poiseuille’s law for laminar fluid flow between two parallel plates, physicochemical theories, and experimental permeability data, it is shown that the formation of macrocracks is the most plausible mechanism of permeability increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.