Abstract

Salvia miltiorrhiza is a traditional Chinese herbal medicine with tanshinone as one of the main bioactive components and has antitumor, antibacterial, anti-inflammatory properties, as well as other physiological functions. Tanshinone, as a secondary metabolite, is synthesized under salt stress or other environmental stresses. Oxidative stress is an important physiological response of plants to salt stress. Transcription factors (TFs) are believed to play regulatory roles in this process, and AP2/ERF TFs have significant effects on defense against the adversity of plants. However, investigations on the regulation of AP2/ERF TFs in tanshinone synthesis under salt stress are limited. In this research, the tanshinone content, related gene expression and activities of enzymes, and the markers of oxidative stress were determined. The results showed that SmAP1, SmAP2 and SmERF2 were AP2/ERF TFs with AP conserved sequences, whose relative expression levels increased and were positively correlated with the contents of tanshinone I (T-I), tanshinone IIA (T-IIA) and cryptotanshinone (CT) in the roots of Salvia miltiorrhiza. The content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) increased in the roots of Salvia miltiorrhiza. The expression levels of genes encoding enzymes and the activities of key enzymes in the tanshinone biosynthesis pathway increased accordingly. The results showed that AP2/ERF TFs could positively regulate the biosynthesis of tanshinone in the roots of Salvia miltiorrhiza under salt stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call