Abstract

X-ray crystallographic characterization of enzymes at different stages in their reaction cycles can provide unique insight into the reaction pathway, the number and type of intermediates formed, and their structural context. The known mechanistic diversity in the radical S-adenosylmethionine (SAM) superfamily of enzymes makes it an appealing target for such studies as more than 100,000 sequences have been identified to date with wide-ranging reactivities that share a pattern of complex radical-mediated chemistry. Here, we review selected examples of radical SAM enzyme crystal structures representative of reactant, product, and intermediate state complexes with a particular emphasis on the strategies employed to capture these states. Broader application of structural characterization techniques to analyze mechanism and substrate specificity is certain to play an important role as more members of this family become tractable for biochemical study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.