Abstract

Finasteride is employed in treatment of benign prostatic hyperplasia in man, where its target enzyme is steroid 5α-reductase. It is a novel, potent mechanism-based inhibitor of the human prostate (type 2) isozyme. Although it is accepted as an alternate substrate and is ultimately reduced to dihydrofinasteride, this proceeds through an enzyme-bound NADP−dihydrofinasteride adduct. Finasteride is processed with a second-order rate constant, ki/Ki = 1 × 106 M-1 s-1, that approaches kcat/Km for reduction of testosterone, 3 × 106 M-1 s-1, and essentially every catalytic event is lethal (partition ratio ≤ 1.07). The membrane-bound enzyme−inhibitor complex formed from [3H]finasteride appears to release [3H]dihydrofinasteride with a half-life of 1 month at 37 °C (k = (2.57 ± 0.03) × 10-7 s-1), as identified by mass spectroscopy. The intermediate NADP−dihydrofinasteride adduct can be recovered intact by denaturation of the enzyme−inhibitor complex and has been purified. Free in solution, it likewise decomposes to ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call