Abstract
Mycobacterium tuberculosis remains the leading cause of death by a bacterial pathogen worldwide. Increasing prevalence of multidrug-resistant organisms means prioritizing identification of targets for antituberculars. 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (HsaD), part of the cholesterol metabolism operon, is vital for survival within macrophage. The C-C bond hydrolase, HsaD, has a serine protease-like catalytic triad. We tested a range of serine protease and esterase inhibitors for their effects on HsaD activity. As well as providing a potential starting point for drug development, the data provides evidence for the mechanism of C-C bond hydrolysis. This screen also provides a route to initiate development of fragment-based inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.