Abstract
The mechanism and thermodynamic of NH3 + O2 reaction on the singlet and triplet potential energy surfaces (PES), were carried out using the RMP2 and CCSD (T)//RMP2 theoretical approaches in connection with the 6-311++G(d, p) basis set. Three pre-reactive complexes, 1C1, 1C2, and 3C1 on the singlet and triplet PES were formed between ammonia and molecular oxygen. With variety of pre-reactive complexes, six types of products are obtained, of which two types are found to be thermodynamically stable. The mechanistic properties of all products channels are discussed. Results show that production of HONO + H2 and HN(OH)2 are the main reaction channels in thermodynamic viewpoint with the Gibbs free energy of ∆G° = −34.681 and −27.153 kcal/mol, respectively. Rate constants of the title reaction over the temperature range of (200–1000 K) show kinetic products are different from thermodynamic products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.