Abstract

The urgent need for clean energy coupled with the exceptional promise of hydrogen (H) as a clean fuel is driving development of new metals resistant to hydrogen embrittlement. Experiments on new fcc high entropy alloys present a paradox: these alloys absorb more H than Ni or SS304 (austenitic 304 stainless steel) while being more resistant to embrittlement. Here, a new theory of embrittlement in fcc metals is presented based on the role of H in driving an intrinsic ductile-to-brittle transition at a crack tip. The theory quantitatively predicts the H concentration at which a transition to embrittlement occurs in good agreement with experiments for SS304, SS316L, CoCrNi, CoNiV, CoCrFeNi, and CoCrFeMnNi. The theory rationalizes why CoNiV is the alloy most resistant to embrittlement and why SS316L is more resistant than the high entropy alloys CoCrFeNi and CoCrFeMnNi, which opens a path for the computationally guided discovery of new embrittlement-resistant alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.