Abstract
Density functional theory calculations were performed to investigate the iridium-catalyzed intramolecular silylation of unactivated C(sp3)-H bonds. The computations show that the in situ generated iridium(III) silyl dihydride species is the active catalyst, from which the followed migratory insertion and the transmetalation would generate the iridium(III) disilyl hydride species. The reaction was found to take place through an Ir(III)/Ir(V) catalytic cycle, and the C(sp3)-H bond oxidative addition constitutes the rate- and enantioselectivity-determining step. The steric repulsion and C-H···π interaction were found to account for the experimentally observed enantioselectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.