Abstract

The currently dominant method in the production of wafers is to use slurry wire-saw slicing. This paper reports a new wire-saw slicing technology, namely, semifixed abrasive wire-saw slicing. The traditional smooth wire is replaced by a patterned wire with a textured surface that can help the wire carrying the abrasives. It aims to improve the number of transient fixed abrasives in the machining process. Transient fixed abrasives can produce “scratch-indenting” processes that are similar to fixed-abrasive wire slicing thereby improving the efficiency of the wire-saw cutting. This study focuses on the behavioral mechanics of the abrasive grits in the slurry during the slicing process. The dynamic images of the movement of abrasive grits in the slicing process are obtained by a high-speed camera. At the microlevel, using statistical methods, the behavioral mechanics of the abrasive grits are investigated by changing the slicing parameters. The results contribute toward a more intuitive and profound understanding of the principle of free-abrasive wire sawing.

Highlights

  • Wire-saw slicing technology has conventionally been used for cutting monocrystalline and polycrystalline silicon ingots [1,2,3,4,5,6]

  • Different behavioral mechanics of the abrasive grits in the slurry determine the mechanism of material removal

  • A multistrand wire and an individual strand wire were used as the analog experimental wires. Both in the semifixed and free-abrasive wire sawing processes, were captured through the dynamic three-dimensional digital microscope, which were analyzed in the computer, thereby contributing to the intuitive and profound understanding of the cutting principle of the free-abrasive wire sawing

Read more

Summary

Introduction

Wire-saw slicing technology has conventionally been used for cutting monocrystalline and polycrystalline silicon ingots [1,2,3,4,5,6]. In the slicing process of the free-abrasive wire-saw, material is continuously removed through the interaction of the abrasive particles below the moving wire and the silicon surface. The earlier work done by Bhagavat and Kao described the removal mechanism during the wire-sawing process as a “rolling-indenting” model with three-body abrasion [3, 4, 9]. In this case, rolling abrasives between the moving wire and the workpiece are randomly rotated and indented into the surface under film pressure to generate cracks and make the material chip away from the substrate. Analysis of the motion state of abrasive particles in the cutting process in terms of different process parameters and different wire patterns helps in the intuitive and profound grasp of the cutting principle involved in free-abrasive wire sawing [18,19,20]

Semifixed Abrasive Wire-Saw Slicing
System Design
Experiments and Analysis
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.