Abstract

A gene that controls resistance to chickpea rust (Uromyces ciceris-arietini) has been identified in a recombinant inbred line (RIL) population derived from an interspecific cross between Cicer arietinum (ILC72) × Cicer reticulatum (Cr5-10), susceptible and resistant to rust, respectively. Both parental lines and all RILs displayed a compatible interaction but differed in the level of infection measured as Disease Severity (DS) and Area Under the Disease Progress Curve (AUDPC). Histological studies of the seedlings of resistant parental Cr5-10 line revealed a reduction in spore germination, appressorium formation, number of haustoria per colony and colony size, with little host cell necrosis, fitting the definition of partial resistance. A Quantitative Trait Locus (QTL) explaining 31% of the total phenotypic variation for DS in seedlings and 81% of the AUDPC in adult plants in the field was located on linkage group 7 of the chickpea genetic map. The AUDPC displayed a bimodal distribution with high frequency of susceptible lines and both the AUDPC and markers showed the same distorted segregation. Consequently, it was hypothesised that a single dominant gene (proposed as Uca1/uca1) controlled resistance to rust in adult plants. This allowed us to locate the gene on the genetic linkage map. Two Sequence Tagged Microsatellite Sites (STMS) markers, TA18 and TA180 (3.9 cM apart) were identified that flank the resistance gene. These findings could be the starting point for a Marker-Assisted Selection (MAS) programme for rust resistance in chickpea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call