Abstract

The mechanism of cardiolipin (diphosphatidylglycerol) biosynthesis was examined in mitochondria and outer and inner mitochondrial membranes prepared from guinea pig and rat livers to determine whether this formation from phosphatidylglycerol was absolutely dependent on cytidinediphosphodiglyceride, as previously reported for intact mitochondria. Experimental results confirmed that the biosynthesis of cardiolipin, from the membrane-bound radioactive phosphatidylglycerol in intact mitochondria isolated from guinea pig and rat liver, was absolutely dependent on CDP-diglycerides and required the addition of divalent cations. Furthermore, the same mechanism for the biosynthesis of cardiolipin was operational in the outer and inner mitochondrial membranes. This biosynthesis was associated with both the outer and inner mitochondrial membranes prepared from guinea pig liver, but only with the inner mitochondrial membranes prepared from rat liver. The release of radioactive glycerol was also measured, but the amount obtained did not satisfy the stoichiometric requirement for CDP-diglyceride-independent biosynthesis of cardiolipin from 2 mol of phosphatidylglycerol with the liberation of 1 mol of glycerol. Therefore, it was concluded that this mechanism is not involved in the biosynthesis of cardiolipin in mitochondrial and submitochondrial membranes prepared from guinea pig and rat liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call