Abstract

Mechanical characteristics, dimensional stability, and bonding strength are all impacted by water sorption in polymer filler materials. The diffusion coefficient (D) of water through polymer composite, should be determined to understand the impact of the deterioration on service life and micro-leakage. In this study, the kinetics and properties of water absorption by short-term immersion in room-temperature plantain fibre reinforced epoxy bio-composites (PFRC), were studied. 5, 10, 20, and 30 percent, plantain fiber (PF) volume fractions of bio-composite specimens were made. Due to the high cellulose content of natural fibers (NF), the percentage of moisture absorption grew as the PF volume fraction increased. The mechanism and kinetics of PFRC's water absorption were found to follow the Fickian diffusion mode and had the propensity to behave in the Fickian mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call