Abstract

The aim of this work was to describe the mechanism and kinetics of plasma nitriding of a Nb-containing PM (powder metallurgy) tool steel. Material containing 2.5 wt.% C, 3.3% Si, 6.2% Cr, 2.2% Mo, 2.6% V, 2.6% Nb and 1.0% W was prepared by nitrogen melt atomization and hot isostatic pressing. Heat-treated steel (quenching from 1100 °C, triple tempering at 550 °C for 1h) was plasma nitrided at temperatures ranging from 470 °C to 530 °C / 30 - 180 min. Light microscopy, TEM, SEM and WDS were used to study the nitrided steel. It has been shown, that nitriding at 470°C leads to the formation of thin layers composed only of a diffusion zone containing nitrogen-rich martensite and fine nitride precipitates, no layer of nitrides is formed on the surface. Nitriding is probably controlled by the nitrogen diffusion in martensite to the material or by the processes in the nitriding atmosphere at this temperature. Nitriding at the temperature of 500°C and more leads to the formation of a continuous layer of nitrides and carbonitrides on the surface that limits further nitrogen diffusion. Niobium, as a prospective element in tool steels, was not found to play a role in the formation of the nitrided layer directly. Niobium replaces vanadium in very thermodynamically stable primary MC carbides. This results in higher vanadium content in others less stable carbides and in the matrix. Due to this effect, higher portion of vanadium can precipitate as VC carbides and VN nitrides during heat treatment and nitriding, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.