Abstract

The kinetics of ligand exchange between ferric citrate and desferrioxamine B (DFB) was investigated at pH 8.0 and high citrate/Fe molar ratios (500-5000) with particular attention given to understanding the precise mechanism of ligand exchange. Ferric citrate complexes present in a test solution and therefore involved in the reaction with the incoming ligand (DFB) were initially examined by evaluating ferric citrate speciation on the basis of published thermodynamic constants. The speciation analysis indicated that mononuclear (mono- and dicitrate) ferric complexes are the major species responsible for the ligand exchange with DFB under the conditions examined in the present work. Given the tendency of DFB to adjunctively associate with the ferric citrate complexes, we propose a kinetic model containing the following three mechanisms: (i) direct association of DFB to the ferric dicitrate complex prior to any dissociation of citrate molecules from the Fe center, (ii) adjunctive association of DFB toward ferric monocitrate complex following dissociation of one molecule of citrate from the parent complex, and (iii) complexation of hydrated Fe by DFB after sequential dissociation of two molecules of citrate from the Fe center. Overall rates for the ligand exchange were determined by spectrophotometrically monitoring the formation of ferrioxamine B. Further analysis in quantifying the rate of each mechanism by use of published and determined rate constants of relevant elemental reactions suggested that the first and second mechanisms were significant under our experimental conditions where [Cit] ≫ [DFB] with the relative importance of these two pathways depending on citrate concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.