Abstract

The mechanism of direct N(2)O decomposition over Fe-ZSM-5 and Fe-silicate was studied in the temporal analysis of products (TAP) reactor in the temperature range of 773-848 K at a peak N(2)O pressure of ca. 10 Pa. Several kinetic models based on elementary reaction steps were evaluated to describe the transient responses of the reactant and products. Classical models considering oxygen formation via recombination of two adsorbed monoatomic oxygen species (*-O + *-O --> O(2) + 2*) or via reaction of N(2)O with adsorbed monoatomic oxygen species (N(2)O + *-O --> O(2) + N(2) + *) failed to describe the experimental data. The best description was obtained considering the reaction scheme proposed by Heyden et al. (J. Phys. Chem. B 2005, 109, 1857) on the basis of DFT calculations. N(2)O decomposes over free iron sites (*) as well as over iron sites with adsorbed monoatomic oxygen species (*-O). The latter reaction originates adsorbed biatomic oxygen species followed by its transformation to another biatomic oxygen species, which ultimately desorbs as gas-phase O(2). In line with previous works, our results confirm that the direct N(2)O decomposition is controlled by pathways leading to O(2). Our kinetic model excellently described transient data over Fe-silicalite and Fe-ZSM-5 zeolites possessing markedly different iron species. This finding strongly suggests that the reaction mechanism is not influenced by the iron constitution. The TAP-derived model was extrapolated to a wide range of N(2)O partial pressures (0.01-15 kPa) and temperatures (473-873 K) to evaluate its predictive potential of steady-state performance. Our model correctly predicts the relative activities of two Fe-FMI catalysts, but it overestimates the absolute catalytic activity for N(2)O decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.