Abstract

The thermal dehydration of epsomite (MgSO4*7H2O) crystals grown in the presence and absence of organic additives (phosphonates, carboxylic acids, and polyacrylic acid derivatives) was studied by means of thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray thermodiffraction (XRTD), and environmental scanning electron microscopy (ESEM). In situ XRTD analyses (in air, 30% relative humidity) show an -->epsomite hexahydrite (MgSO4*6H2O) transition at 25-38 degrees C, followed by formation of amorphous phase(s) at T > 43-48 degrees C, and MgSO4 crystallization at approximately 300 degrees C. Kinetic parameters (E(alpha) and A) were determined for the main dehydration step (25-160 degrees C), which corresponds to a MgSO4*7H2O-->MgSO4*H2O transition, by applying two isoconversional methods to nonisothermal TG data obtained at different heating rates (beta= 1, 3, and 5 K*min-1). In situ, hot-stage ESEM observations of the thermal dehydration of epsomite crystals are consistent with the nonisothermal kinetic study and, along with XRTD results, allow us to propose a dehydration mechanism which includes an early nucleation and growth event, followed by the advancement of the reaction interface (3D phase boundary reaction). Both E(alpha) and A values increase in the presence of the most effective crystallization inhibitors tested. H-bonding between additives and epsomite crystal surfaces is consistent with Fourier transform infrared spectroscopy (FTIR) and may account for this effect. The increase of E(alpha) values can be related to the excess energy required to break additive-water bonds in the reactant. These results are likely to further our understanding of the interaction mechanisms between salt hydrates and organic additives which act as growth inhibitors/modifiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call