Abstract

We investigated the influence of particle shape and solubility on the caking behavior of trisodium phosphate by considering the adhesion free energy and crystal bridge theory. Caking of trisodium phosphate during the drying process under static conditions is a two-step process: adhesion followed by crystal bridge formation between particles. The adhesion free energy plays an important role in adhesion. Trisodium phosphate particles cannot adhere to each other and cake when the adhesion free energy is greater than a critical value, which varies with particle shape. Compared with granular particles, cylindrical particles have larger contact area between particles, which results in more crystal bridges forming and a higher caking ratio. Thus, the critical value is about 100mJ/m2 for cylindrical particles, but 60mJ/m2 for granular particles at 25°C. Concerning the solubility, when particles are similar shapes and soluble in the rinsing liquid, the caking ratio has a linear relationship with adhesion free energy. However, if the particles are insoluble in the rinsing liquid, caking can be completely prevented regardless of adhesion free energy because no crystal bridges form during the growth process. Hence, caking of trisodium phosphate particles could be inhibited by screening rinsing liquids, and optimizing the particle shape and size distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.