Abstract
The functional status and mechanism of increased VDR in GHS rats were investigated. Basal VDR and calbindins were increased in GHS rats. 1,25(OH)(2)D(3) increased VDR and calbindins in controls but not GHS rats. VDR half-life was prolonged in GHS rats. This study supports the mechanism and functional status of elevated VDR in GHS rats. Genetic hypercalciuric stone-forming (GHS) rats form calcium kidney stones from hypercalciuria arising from increased intestinal calcium absorption and bone resorption and decreased renal calcium reabsorption. Normal serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] levels and increased vitamin D receptor (VDR) protein suggest that high rates of expression of vitamin D-responsive genes may mediate the hypercalciuria. The mechanism of elevated VDR and state of receptor function are not known. GHS and non-stone-forming control (NC) male rats (mean, 249 g), fed a normal calcium diet, were injected intraperitoneally with 1,25(OH)2D3 (30 ng/100 g BW) or vehicle 24 h before cycloheximide (6 mg/100 g, IP) and were killed 0-8 h afterward. Duodenal VDR was measured by ELISA and Western blot, and duodenal and kidney calbindins (9 and 28 kDa) were measured by Western blots. Duodenal VDR protein by Western blot was increased 2-fold in GHS versus NC rats (633 +/- 62 versus 388 +/- 48 fmol/mg protein, n = 4, p < 0.02), and 1,25(OH)2D3 increased VDR and calbindins (9 and 28 kDa) further in NC but not GHS rats. Duodenal VDR half-life was prolonged in GHS rats (2.59 +/- 0.2 versus 1.81 +/- 0.2 h, p < 0.001). 1,25(OH)2D3 prolonged duodenal VDR half-life in NC rats to that of untreated GHS rats (2.59 +/- 0.2 versus 2.83 +/- 0.3 h, not significant). This study supports the hypothesis that prolongation of VDR half-life increases VDR tissue levels and mediates increased VDR-regulated genes that result in hypercalciuria through actions on vitamin D-regulated calcium transport in intestine, bone, and kidney.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.