Abstract

Air often flows into compressors with inlet prewhirl, because it will obtain a circumferential component of velocity via inlet distortion or swirl generators such as inlet guide vanes. A lot of research has shown that inlet prewhirl does influence the characteristics of components, but the change of the matching relation between the components caused by inlet prewhirl is still unclear. This paper investigates the influence of inlet prewhirl on the matching of the impeller and the diffuser and proposes a flow control method to cure mismatching. The approach combines steady three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations with theoretical analysis and modeling. The result shows that a compressor whose impeller and diffuser match well at zero prewhirl will go to mismatching at non-zero prewhirl. The diffuser throat gets too large to match the impeller at positive prewhirl and gets too small for matching at negative prewhirl. The choking mass flow of the impeller is more sensitive to inlet prewhirl than that of the diffuser, which is the main reason for the mismatching. To cure the mismatching via adjusting the diffuser vanes stagger angle, a one-dimensional method based on incidence matching has been proposed to yield a control schedule for adjusting the diffuser. The optimal stagger angle predicted by analytical method has good agreement with that predicted by computational fluid dynamics (CFD). The compressor is able to operate efficiently in a much broader flow range with the control schedule. The flow range, where the efficiency is above 80%, of the datum compressor and the compressor only employing inlet prewhirl and no control are just 25.3% and 31.8%, respectively. For the compressor following the control schedule, the flow range is improved up to 46.5%. This paper also provides the perspective of components matching to think about inlet distortion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.