Abstract
Pathogenic bacteria can remain viable on fabrics for several days and therefore are a source of infection. Antimicrobial fabrics are a potential method of reducing such infections, and advances in antimicrobial fabrics can be enhanced by knowledge of how the fabric kills bacteria. Metal oxides have been considered and used as antimicrobial ingredients in self-sanitizing surfaces, including in clinical settings. In this work, we examine how the addition of cuprous oxide (Cu2O) particles to polypropylene fibers kills bacteria. First, we show that the addition of the Cu2O particles reduces the viability of common hospital pathogens, Staphylococcus aureus, Pseudomonas aeruginosa, and Streptococcus pneumoniae, by 99.9% after 30 min of contact with the treated polypropylene. Then, we demonstrate that the main killing effect is due to the drying of the bacteria onto the cuprous oxide particles. There is also a weaker effect due to free Cu+ ions that dissolve into the liquid. Other dissolved species were unimportant. Chelation of these Cu+ ions in soluble form or precipitation removes their antimicrobial activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.