Abstract

The formation of wurtzite GaN nanoclusters in an amorphous silica matrix, via gallium and nitrogen ion implantation and rapid thermal annealing, is identified using Extended X Ray Absorption Fine Structure analysis. The mechanism and the crucial parameters that rule the formation of the nanoclusters are established by the use of molecular dynamics simulations. The dominant structural parameters are found to be the concentration of the silicon and oxygen vacancies that are formed during the implantation and the annealing temperature. It is concluded that annealing at 1400 K and 8% Ga/Si and 12% N/O ratios are needed for the formation of GaN nanoclusters. In addition to that, the GaN nanocluster formation is accomplished only when the vacancy concentrations of silicon and oxygen atoms are equal to 10% and 20%, respectively. Finally, the observation of various snapshots upon an increase of the annealing duration indicates the coalescence of smaller GaN nuclei towards larger ones, designating that the Ostwald ripening is a dominant mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.