Abstract

Vibrational energy flow in organic molecules occurs by a multiple-time-scale mechanism that can be modeled by a single exponential only in its initial stages. The mechanism is a consequence of the hierarchical structure of the vibrational Hamiltonian, which leads to diffusion of vibrational wavepackets on a manifold with far fewer than the 3N−6 dimensions of the full vibrational state space. The dynamics are controlled by a local density of states, which does not keep increasing with molecular size. In addition, the number of vibrational coordinates severely perturbed during chemical reaction is small, leading to preservation of the hierarchical structure at chemically interesting energies. This regularity opens up the possibility of controlling chemical reactions by controlling the vibrational energy flow. Computationally, laser control of intramolecular vibrational energy redistribution can be modeled by quantum-classical, or by purely quantum-mechanical models of the molecule and control field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.