Abstract

Rheological properties play a crucial role in characterizing 3D printed cement-based materials. To further investigate the mechanism behind rheological evolution, this study employs low-field NMR relaxation time measurement to characterize the microstructure evolution of 3D printed steel slag cementitious material within the first 6 hours. This is combined with rheological parameters to explore the relationship between the mixture's rheological properties and pore microstructure over time. The results demonstrate that relaxation time effectively represents the temporal characteristics of rheological parameters, while pore throat distribution (0–0.1μm) exhibits a positive correlation with plastic viscosity. Low-field NMR relaxation characteristics can effectively describe early properties of 3D printed cementitious materials and provide valuable data support for future exploration of non-destructive testing during early stages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.