Abstract

The paper/oil system is the main component of transformer insulation. Indicator plays a vital role in assessing the aging condition of local hot spots of transformer insulation paper. The cellulosic insulating paper is mainly composed of cellobiose. This study uses the molecular dynamics method based on reactive force field (ReaxFF) to pyrolyze the insulating paper. Various production paths of ethanol were studied at the atomic level through ReaxFF simulations. A model consisting of 40 cellobioses was established for repeated simulation at 500 K-3000 K. Besides, to explore the relationship between the intermediate products and ethanol, the combination model of intermediate products (levoglucosan, acetaldehyde, 2,2-dihydroxyacetaldehyde) was established for repeated simulation. The simulation results showed that the increase in temperature can accelerate the production of ethanol from insulating paper and its pyrolysis intermediate products, which matched the related experimental results. This study can provide an effective reference for the use of ethanol as an indicator to assess the aging condition of the local hot spots of transformers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call