Abstract

A combined experimental and analytical investigation has been performed to understand the mechanical behavior of two amorphous polymers—polycarbonate and poly(methyl methacrylate)—at strain rates ranging from 10 −4 to 10 4 s −1. This range in strain rates was achieved in uniaxial tension and compression tests using a dynamic mechanical analyzer (DMA), a servo-hydraulic testing machine, and an aluminum split-Hopkinson pressure bar. DMA tension tests were used to characterize the viscoelastic behavior of these materials, with focus on the rate-dependent shift of material transition temperatures. Uniaxial compression tests on the servo-hydraulic machine (10 −4 to 1 s −1) and the split-Hopkinson pressure bar (10 3 to 10 4 s −1) were used to characterize the rate-dependent yield and post-yield behavior. Both materials were observed to exhibit increased rate sensitivity of yield under the same strain rate/temperature conditions as the β-transition of the viscoelastic behavior. A physically based constitutive model for large strain deformation of thermoplastics was then extended to encompass high-rate conditions. The model accounts for the contributions of different molecular motions which become operational and important in different frequency regimes. The new features enable the model to not only capture the transition in the yield behavior, but also accurately predict the post-yield, large strain behavior over a wide range of temperatures and strain rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.