Abstract

Pressurized fabric tubes, pressure-stabilized beams (known as air beams) and air-inflated structures are considered to be valuable technologies for lightweight, rapidly deployable structures. Design optimization of an inflated structure depends on a thorough understanding of woven fabric mechanics. In this paper the bending response of woven pressure-stabilized beams have been experimentally tested and analytically investigated. Additionally, the micromechanical effects of interacting tows have been studied through finite element models containing contact surfaces and nonlinear slip/stick conditions. Local unit cell models consisting of pairs of woven tows were created to characterize the effective constitutive relations. The material properties from the unit cell models were then used for the global continuum model subjected to 4-point flexure. An experimental set-up was designed and manufactured for testing of Vectran and PEN air beams. The air beam mid-span deflections were measured as functions of inflation pressure and bending load. Plots of the elastic and shear moduli with respect to the pressure and coefficient of friction have been generated. It was determined that the effective elastic and shear moduli were functions of inflation pressure, the material used and the geometry of the weave. It was shown that pneumatic or pressurized tube structures differ fundamentally from conventional metal structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.